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LAMINAR SEPARATION OVER A TRANSPTRATTON-COOLED
SURFACE IN COMPRESSIBLE FLOW

By Morris Morduchow
SUMMARY

A theoretical snalysis of laminar separation in compressible flow
over a transpiration-cooled surface maintained at a uniform wall temper-
ature is made. A simple method of calculating the separation point over
such a surface for a given adverse pressure gradient, Mach number, wall
temperature, and uniform coolant temperature is developed. This method
is expected to be sufficiently accurate for most practical purposes. To
show the effects of these parameters on the separation point a numeriecal
exemple 1s worked out in detail. The normal mass flow is found to have
a predominating effect on the location of the separation point, since
over a transpiration-cooled wall separation is found to occur upstream
of the separation point over a heat-insulated wall without normal mass
flow at the same adverse pressure gradient and Mach number. The method
of analysis is based on an applicetion of the Kdrmsn momentum integral
equation in conjunction with seventh-degree velocity and stagnation-
enthalpy profiles.

INTRODUCTION

The cooling of aerodynamically heated surfaces has recently gained
considerable attention in connection with rocket walls, turbine blades,
and high-speed flow over a wing. A promising means of cooling such a
surface appears to be that of transpiration or sweat cooling, a method
by which the surface is made porous and a comparatively smell quantity,
per unit time, of cool fluid is injected normally through the pores
into the main stream (ref. 1).

The question of separation may be of particular interest in con-
nection with flow over a transpiration-cooled surface since a normsl
mass Tlow strongly tends to promote separation by moving the separation
point upstream. On the other hand, cooling of the wall tends, by itself,
to delay separation by moving the separation point downstream.

The purpose of this study is to determine theoretically the actual
net effect of simultaneous normal mass flow and cooling of the wall on
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conditions of separation over a sweat-cooled surface. Separation, as is
well known, is a condition to be avoided, especially in order to prevent
high drag.

The present analysis 1s based on a study of laminar flow in the
boundary layer. It is true that in many actual ceses of sweat cooling,
such as the cooling of turbine blades, the flow 1s perhaps more likely
to be turbulent than laminar. However, the present state of basic theo-
retical knowledge on turbulent flow, especially turbulent separation,
does not appear adequate to serve in developlng a satisfactory analysis
of separation over a sweat-cooled wall. For laminar flow, on the other
hand, the existing basic theoretical knowledge is, in a sense, complete
(if the Navier-Stokes equations, together with Prandtl's boundary-layer
simplifications, are accepted), and it will be seen that it is possible,
on this basis, to develop a falrly simple and yet sufficiently accurate
means of analyzing laminar separation over a sweat-cooled wall. Since
separation tends to occur more readily in & laminar than in a turbulent
boundary layer, the present study 1s of interest in itself. Moreover,
it may tentatively serve as a possible gqualitative guide to the corre-
sponding effects of parameters such as the mass-flow Injection-ratio or
coolant-temperature parameter, the wall-temperature ratio, and the Mach
number on separation in turbulent flow.

Although laminar separation over an impermeable wall has received
considerable attention in the literature (refs. 2 to 6), the only anal-
ysis of separation over a transpiration-cooled wall appears to be that
in reference 7, where an application of the Kdrmgn-Pohlhausen method,
based on fourth-degree velocity profiles, was made. Because of the
appreciable quantitative inaccuracies inherent in the use of fourth-
degree profiles for determining the separation point, however, the anal-
ysis of separation in reference T must be regarded as only quallitative.
The present analysis, which may be considered as a refinement of that
in reference 7, is also based on the Kdrmdn momentum integral equation
but in conjunction with seventh-degree velocity profiles, as in refer-
ences 2 and 6. By using seventh- instead of fourth-degree velocity pro-
files, it is possible to satisfy additional boundary conditions (espe-
cially at the wall) which an exact solution would necessarily satisfy.
As shown in references 2 and 6, excellent agreement, even at high Mach
numbers, with the zero-heat-transfer results of reference 8 has thereby
been obtained.

Although the present analysis can be readily used as a basls for
investigating other properties of the laminar boundary layer over a
transpiration-cooled wall, the emphasis here i1s om only one aspect,
separation. A simple method of calculating other properties (such as
heat transfer and skin friction) of the laminar boundary leyer in flow
over a sweat-cooled surface maintained at a uniform wall temperature
is given in reference 9. A method of calculating the required normal-
mass-flow injection distribution is also given in reference 9. Like
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reference 7, however, reference 9 is based on the use of fourth-degree
velocity profiles and cannot therefore lead to quantitatively accurate
results for the location of the separation point in an adverse pressure
gradient.

In the present investigation, the wall is assumed to be maintained
at a uniform temperature by the appropriate distribution of normal mass
Tlow of the coolant fluld. The coolant is assumed to be the same fluid
as that of the main streem (namely, air), while the coolant temperature
is assumed to be uniform along the surface.

It is further assumed, for mathematical simplicity, that the
Prandtl number is unity and that the coefficlent of viscosity is pro-
portional to the absolute temperature. It may be worth while, in this
connection, to note that in reference 3, based on an analysis of flow
over an impermeable wall with no heat transfer, it has been concluded
that such assumptions should not lead to serious errors in the location
of the separation point under ordinary conditions for air.

The analysis is first carried out in general terms, and a method
for calculating the location of the separation point in a gliven adverse
pressure gradient with a given free-stream Mach number, wall-temperature
ratio, and coolant-temperature ratio is given. Since the normal-mess-
flow injection distribution of the coolant, in general, must be nonuni-
form 1f the wall temperature and coolant temperature are to be uniform,
it will be seen that the parameter containing the coolant temperature
1s a more appropriate parameter than one proportional to the magnitude
of the coolant mass flow. The method presented here ig a direct exten-
sion of that for an impermesble wall contained in reference 6 and,
hence, possesses the same advantages of simplicity and accuracy1 as the
latter. Numerical examples are then worked out in detail for the case
of a linearly decreasing velocity outside of the boundary layer, and
the effect of Mach number, wall-temperature ratio, and coolant-temperature
parameter (or, equivalently, magnitude of the normal mass flow of the
coolant) on the separation point are thereby explicitly shown.

This work, carried out at the Polytechnic Institute of Brooklyn
Aeronautical Iaboratories, was sponsored by and conducted with the finan-
clal assistance of the National Advisory Committee for Aeronautics. The
author hereby expresses his thanks to Mr. Richard P. Shaw and Mr. Richard
G. Grape for their aid in the numerical celculations.

lAlthough the method presented here has been-found to agree very
well with presumed accurate solutions for the special case of zero heat
transfer over an impermeable wall in a typical adverse pressure gradient,
wvhile all of the approximations have been made on a rational basis, this
nevertheless does not constitute a rigorous proof that the method must
necessarily yield equally accurate results in all other general cases.
Indications, however, are that the method may be expected to be of com-
parable accuracy in the more general cases consldered here.
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SYMBOLS
A defined by equation (19c)
aj coefficient of Ti in veloecity profile (1 =1, . . ., 7T)
by - coefficient of T 1in stagnation-enthalpy profile
c= %% (see, also, egs. (15) and (26))
Cp specific heat at constant pressure
Cy specific heat at constant volume
Py defined immediately following equation (10) (1 =1, . . ., 5)

Fig,Fog constant values of F; and F, obtained by replacing a,
by apg and by Dby a constant value (see, also, egs. (28)

and fig. 2)
ue

H stagnation enthalpy, cPT + B

h ratio of actual wall temperature to adiabatic wall temperature,
To/ Te

K coefficient in linear viscosity-temperature relation, defined
by equation (7)

k heat conductivity of fluid

1 characteristic length

M Mach number

m magnitude of external velocity gradient in numerical example
(see eq. (30))

Re reference Reynolds number, p i l/I,

r,s constants defined immediately following equations (28)

S Sutherland's constant, 216° R for air
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T absolute temperature
Te absolute temperature of coolant
Te equilibrium or adigbatic wall temperature
t variable defined by equation (8)
u,v veloclty components in x- and y- directions, respectively
X,y distance along wall and normal to wall, respectively
a,B constants defined by equations (21)
y ratio of specific heats of fluid, cp/ey, 1.4 for air
& boundary-layer thickness in xy plane
B¢ boundary-layer thickness in xt plane
A = (54/1)%Re
! coefficient of viscosity
p masg density
E = x/1
T = t/5¢
o) constant, Fig + Fpg ~ ph (see, also, eqs. (28) and fig. 3)
o} normal-mass-flow parameter, goz? Rel/2
0 o
Subscripts:
o] values at wall
8 velues at separation point
1 values at local outer edge of boundary layer

values at a reference polnt outside of boundary layer

A prime degnotes differentiation with respect to E&.

Sy D — —
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BASIC EQUATTIONS

The partial differentlial equations of the compressible laminsr
boundary layer, for a Prandtl number of unity, can be written in the
following forms:

The momentum equation:

BB o e 24

dH OH _ 9 éﬂ) ' 2
pu £ + pv Sy ay(u Sy (2)

The continuity equation:
9(pu) N o(pv) _ o (3)

ox oy

The quantity H is the stagnation enthalpy, defined as

H=cPT+‘12—2 (&) .

Since the pressure is assumed as constant across the boundary-layer
thickness, it follows from the ideal-ges law that

-F;L = (5)

B,

The coefficlent of viscosity p will be assumed proportional to
the absolute temperature, in the form (cf. refs. 10 and 11)2

Lo T
T K T (6)

vhere K 1s chosen so as to satisfy exactly Sutherlend's viscosity
relation at the wall. If Ty is the wall temperature, assumed in this

2The symbol K instead of the more familiasr symbol C is used
here in order to avoid any confusion with the coolant-temperature param-
eter C of reference 9.
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analysis to be constant along the wall, then X 1is a constent given
by

T+ ST Y2
K=5+s S(ﬁ) (7

vhere S 1is a constant.

The anelysis can be simplified by replacing the normal distance
coordinate y by the varieble +t, defined by

t
y = f TT_dt (8)
o "1

By integrating equations (l) and (2) across the boundary-layer thickness
with respect to y and making use of equations (3), (5), (6), and (8),
the following integrodifferential equations, expressed in nondimensional
form, are obtained (details are given in the appendix):

Fy Py Uy y 1,2
?}\'+7\Fl?+Fl'+al—Fl+(l+ 5 Ml)F2 =

uoopooTl QToo
KEEBI.T.;(F3+K_EVX (9)
B Pyt uy!
-23?\'+7\F4'+ (—l-+ui)=
Py 1

umpooTl Tco
K——:%‘5+(l-h)%ﬁ—l-‘/—{‘ (10)




where

- fa)

The quantity h is defined here as?

= Ho/Hy

For a Prandtl number of 1, a well-known solution of energy equation (2)

NACA TN 3559

(11)

satisfying the condition of zero heat tremsfer at the wall is
H = Constant. It follows that under this condition the wall temperature,
called the equilibrium or adiabatic wall temperature and denoted by Te,

3The quentity h here is essentially the same as that in refer-

ences 7 and 9 and as G in references 6 and 11.
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will be
Ty = Tl(l + La‘—l Mlz) = Tm(l + L;—i Mf) (12)

(since H = Constant also along the flow at the outer edge of the
boundary layer). From equations (%), (11), and (12) it follows that

h = To/Te (13)

Thus, at low speeds (Mw ~ 0), h denotes the ratio of the actual wall
temperature to the main-stream temperature, but at high speeds the
appropriate parameter h 1s the ratio of the actual wall temperature
to the adiabatic wall temperature.

In deriving equations (9) and (10) the conditions u = 0 and
pv = povo &t the wall (y = t = 0) and the conditions of smooth tran-
sition of the velocity and temperature profiles to their local main-
stream values at the outer edge of the boundary layer (t = 5t) have
been used. It should be noted, moreover, that, as in reference 11, a
single boundary-layer thickness for both the velocity and the stagnation-
enthalpy profiles is assumed here. Equations (9) and (10) are, in fact,
a direct extension of equations (11) and (12) of reference 11 to the
case of normal mass flow (p v, # O) at the wall. With K = 1, equa-
tions (9) and (10) are also equivalent to equations (8) and (9) of
reference 9 if the thermal boundary-layer thickness 1s assumed to be

the same as the dynamical boundary-layer thickness in the latter
equations. ‘

A relation between the injected normal mass flow of the ¢cooling
fluid and the desired wall and coolant temperatures can be obtained by
a heat-balance equation stating that the heat transferred by the hot
gas to the well is absorbed by the coolant. This equation can be
written as

(k %g)o = poVoep(Ty = Te) (14)

Both Tp and T, are assumed here as constant along the wall. Equa--
tion (14) implies the following nondimensional relation:

_ Teo _ by
°=%ﬁﬁ"“‘"7—h el (15)

e e —— e ————— ——
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where
‘ E(H/Hl)]
by = [ ————
BT s do

The flow at the outer edge of the boundary layer, denoted by sub-
script 1, is assumed as known and as determined by the shape of the
surface in the flow. In accordance with the isentropic-flow relationms,
the flow outside of the boundary layer 1s assumed to satisfy the
relations

01/ 0w = (T1/T) 7L . (16)

M2 = Mo2(u1/ue) 2(T1/Te) =1 )

Thus, it is necessary only to prescribe the veloclty distribution
uy/u,(t) send the reference Mach number M, outside of the boundary

layer.
METHOD OF DETERMINING SEPARATION POINT

For the purpose of determining the separation point in an adverse
pressure gradient, the velocity and stegnation-enthalpy profiles will
be assumed, as in reference 6, as seventh-degree polynomials. The coef-
ficients are chosen to satisfy the following boundary conditions:

At, T = 0:

u=0, pv=pv,(x), T=1T, (or H/H; =h) (172)
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. d(u/u1) Tow To PL W' 52(u{ul)

= = =-=—24,
oT 9T Py, K dr2

L ) ) m,my ey wpt p AE/EY

> 372 T3 T Po e K 3p

Sty _ |2 3/E) | |22(u/up)
B-ru - lh ot 3.2

3(8/H1) _ d%(m/H1)
¢ oT - BTE

. BQ(H/HJ) _ BB(H/H]_)
a2 3P

At T = 1;

u/u; = 1, H/H, =1

d(u/uq) _ 82(‘u/ul) _ 65(11/111) =0
oT d+2 37D

d(m/my) _ 3%(m/Ey) _ d(m/m) _

0
- oT d2 )

(170)

(17¢)

(174)

(17e)

(17£)

(17g)

(17m)

(171)

Equations (17b) and (17e) follow from partial differential equations (1)
and (2) at the wall, while equations (17c) and (17f) can be cbtained by

e e e e e e ——— s e—
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differentiating equations (1) and (2) with respect to +t and taking
values at the wall. Equations (17a) to (17c) and (17e) to (17i) are
essentially extensions of boundary conditions (22) to (28) of refer-
ence 11 to the case of normal mass flow at the wall (i.e., c¢ # 0).

Equation (17d) is an additional condition introduced for the
specific purpose of obtaining greater accuracy in calculsting the Ioca-
tion of the separation point in an adverse pressure gradient. This is
a condition at the wall which an exact solution would necessarily satisfy
at the separation point (though not necessarily elsewhere). It was
originally applied in reference 12 for celculation of the separation
point of incompressible flow over an impermeable well and was subse-
quently applied in references 2 and 6 to compressible flow over an
impermeable wall without and with heat transfer. In all of those cases

the condition {iah(u/ul)/BT¥]0 = 0 was used and was obtained by differ-
entiating equation (1) twice with respect to t (or y in incompres-

sible flow) and then taking values at the wall at the point of separa-
tion, that is, where (du/dt)o = 0. The present condition, namely, equa-

tion (17d), is an extension of that condition for the case of a normal
mess flow (c # O) and can be obtained in a menmer essentially similar
to that shown in detail, for an impermeable wall, in reference 6.

The seventh-degree stagnation-enthalpy and velocity profilies

satisfying boundary conditions (17a) to (17i) can be written in the
following dimensionless forms:

%: h+ (1 - 11)(3557lL - 8D + Tord - 2m7) +

bll:(‘r - 20t* + 4575 - 36:6 4 lOT7) +
%(72 - 10 + 2070 - 1570 & 4eT) &

(3 _ut 465 J b Tﬂ (18)

O\

7
7= S za.i'rfL (19=a)
1=1

)=
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where

e

ap

= (A+ 2&2)/0

bye
_2“__1_)

(7/2)e S

2 2b

c 1

__]_6 +._.)
1++c+120( +c o

>

13

(19p)

(19¢)
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By .substituting expressions (18) and (19a) to (19c) for the
stagnation-enthalpy and velocity profiles into equations (9) and (10),
the latter become ordinary differential equations for A(¢) and by(&).
Proceeding in & manner analogous to that in references 9 and 11, one
can obtain a general approximate solution of equation (9) by making the
simplifying approximation that in.the expressions for F; and F, (and

only there) the ag(&) terms may be replaced by constant values for the
entire flow. Moreover, bl(g) is assumed to be replaceable by a con-
stant value in equation (9). Hence, in accordance with equation (15),

¢ will be a constant, since h and T. (and hence Tc/Te) are assumed
here as uniform along the wall. By meking use of equation (192) in con-
Junction with the expression for aj in equations (19b) and (19c), equa-
tion (9) can thus be written as the following linear first-order differ-
ential equation for A(E):

F p uq'
1s 1 1 y - 1\, 2 _
—2—7\' A lsEl—+El—l:¢+( 5 )Ml((D—FlB)J =
T
K o2 Pe 21 (04 o) (20)
ulpl )

where Fj; and Fp, are the constants obtained by giving a; and by
constant values in F, and Fp, respectively, while ¢ is a constant
defined by

15 ¥ Fpg - BB

Moreover, a and f are constants defined by the relation &a; = a + BA.
Thus

a = 7
b
b + ¢+ £§_<u5+.c + E_;)
120 h
0 (21)
c P 2
o - h+—l-§6l:(l6+ c)h4+ 2b]] +Ebl
c2 2by’
Y +c+ i§5<é6 + e+ —Er>
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By the use of relations (16), the following solution of equation (20),
with the condition A =0 at & = 0, is obtained:

2 27-1 ¢
g .F'— (I)_l ____.l - F—_
(u ) (T ) " ot
Yy, T
O (o0}

(22)

A(E) = Fi (c + a)K

EE El')"l_ﬁl:
u, T

0,

It may be noted that this expression for the dimensionless squared
boundary-layer thickness A(t) 1in the xt plane is of a form quite simi-
lar to that (cf. refs. 11 and 6) for zero normsl mass flow (¢ = 0). 1In
fact, as has been seen, the introduction of a small* normel mass f£low
of cooling air at the wall does not introduce any additional difficulties
into the present mathematical analysis, and no simplifying approximations
in addition to those made in references 11 and 6 for an impermeseble wall
need be made here. This 1s due essentially to the fact that the mass-
Tlow parameter ¢ appears only in the form defined by c¢ and that
according to heat-balance equation (15) with uniform wall and coolant
temperatures c¢ can be approximated well by a constant.

Separation of the flow will occur where (du/dy), = O and, hence,
where &1 = 0. According to equations (19b) and (19c), this implies
that the value of A (to be denoted as Ag) required for separation
will be:

-2y

Sl
o = - 2
S SNy

The value (assumed constant) of b; now remains to be determined

and, thence, the value of the coolant parameter c. The value of b3
can be obtained in a manner analogous to that developed in reference 11
for en impermeable wall. However, for flows which, at the leading edge,
behave like those in a zero pressure gradient, that is, flows for which
up is finite while A =0 at & =0, a good approximation for by

cen be obtained by calculating the value corresponding to the flow over
a flat plate (cf. ref. 6).

(23)

lFEIJ]:l,za.t i1s, sufficiently small that the boundary-layer spproximations

of Prandtl remsain wvalid.
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To determine the value of bi for flow over a flat plate (ui' = 0)
it is first noted that for this case, with the wall temperature uniform,
equations (1) and (2) imply a linear relation between the stagnation-
enthalpy and the veloclty profiles:

'ﬁHI =h+ (1- h)(u_ul) (24)

Equation (24) is valid regardless of whether or not a normal mass flow
exists at the wall. If it is assumed (as, e.g., in ref. 11) that the
velocity profiles in the boundary layer over a flat plate can, in gen-
eral, be well represented by sixth-degree polynomisls,- then it follows
from equation (24) that the stagnation-enthalpy profiles must in this
case also be sixth-degree polynomials. Consequently, an accurate value
of by for the flow over a flat plate can be obtained simply by setting

the coefficient of [ in equation (18) equal to zero. This yields

120(1 - h)
b, = 2
1 60 + 12¢ + c2 (25)

In analogy to the procedure in reference 6, this ‘is the value of by
vhich will be assumed herein for the purpose of calculating the separa-
tion point. Substitution into equation (15) for by according to equa-
tion (25) yields

c(60 + 12¢ + c2) = 120 — =8 (26)
h - (Te/Te)

Thus, for a given (positive) value of the parameter (1 -Iﬂ/[ﬁ.- (Tc/Teﬂ s
the value of ¢ can be directly determined by calculating the real posi-

tive root of cubic equation (26). Although the basic coolant-temperature
paremeter is (1 - h)/[h - (Tc/Te)], 1t is seen that it is more conven-

ient to treat ¢ as the coolant-temperature parameter. The parameter c¢
as & function of (1 - h%/[h - (Tc¢/Te)] is shown in figure 1.

The values of the constants F;5; and Fog; &and, hence, ® can be

obtained by inserting expressions (18) and (19a) to (19c) for the
stagnation-enthalpy and velocity profiles into the integral expressions

DThese profiles would be chosen to satisfy all of boundary conditions
(17a) to (17i) with the exception of condition (17d).
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for F1 and Fo given immediately following equations (9) and (10).
As in references 2 and 6, the constant value of ap (to be denoted
by apg) will be chosen here as the value of ap(t) at the separation
point. Setting &7 = 0 and using equations (19b) for a] and ap,
in addition to equation (19c¢), it is found that

2
——— — c ——
+l5h+120(l6+c+ )

The explicit expressions for the constants F,, and ¢ are thus found
to be '

F1g = -0.273310 + 0.37058lapg - 0.074867an,? + 0.002863an,r -
0.001183a05°r - 0.000004727ang2re - 0.023592(s - 2apge) +
0.009678a05(8 ~ 220gc) + 0.00007701laor(s - 2apge) -

0.0003141(s - 2ap4c)? F (28)

_ B,bh, (3 ,c, )
¢—2Fls+‘l6+2+bl(28+8’++l,680

.8 1 - -
a23(168 + 5.0 c) + Z750 (925 - llapgr) - gh J

where

r5§ (2by + ch)

s = -2a28b1/h
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and by, &og, and B are given respectively by equations (25), (27),
and (21). Thus Fy, and ¢ are functions only of the tempersture

ratlo h and the coolant parameter c¢. These functions are shown in
figures 2 and 3, which may be used to facilitate actual calculations.

In order to determine the separation point over a sweat-cooled wall
in a given adverse pressure gradient (uj' < 0) with a given reference
Mach number M,, given uniform wall-temperature ratio h, and gliven uni-

form coolant-temperature ratio To/Tb, it is necessary only to calculate
A(&) in accordance with equation (22) and to determine the value of ¢
at wvhich A(E) = Ag, where Ag 1is given by equation (23). This method
includes the case of flow over an impermeable wall (zero normal mass
flov at the wall), for which ¢ =0 and h is considered as arbitrary.
The coolant normal-mass-flow distribution, as given by ¢ and implicit
in this analysis, can be obtained from equation (15) after A(E) has
been determined. Thus,

|
p(g) =K T (29)

<
Va

where c¢ 1is determined by equation (26) (or fig. 1).
NUMERICAL EXAMPLE

The implications of this analysis for the effects of Mach number,
and simultaneous cooling of the well and normal mass flow, on laminar
separation over & sweat-cooled wall can best be shown by a numerical
example. For this purpose, the case of a linearly diminishing velocity
outside of the boundary layer will be treated in deteil. Thus, 1t will
be assumed that

u)/u, = 1 - mé (30)

where m 1is a positive constant. For the case represented by equa-
tion (30), the separation point will be calculated as a function of the
coolant-temperature ratio (and thus implicitly es & function of the

brp Fig &nd ¢ are calculated directly from equations (28)

instead of read off from figures 2 and 3, care must be taken to use a
sufficient number of significant figures, since relatively small differ-
ences may occur here.
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required magnitude and distribution of the normal mass flow of the cool-
ant) for various fixed values of the wall-temperature ratio T,/Te.

For M, = 0, that is, for low-speed (but nevertheless compressible)
flows, equations (16) imply T;/T, = 1, and equations (22) and (23) in
conjunction with equation (30) then yleld the following relatively

simple expression for the separation point as a function of the wall-
temperature ratio h &and the coolant-temperature perameter c:

Fig
\'ze

meg =1 - [1+ 7%

(c + a) h+-f—5-bl+—lg—o|216+c)h+ 2b1]}/

(31)

where o, by, Fig, and ¢ are given by equations (21), (25), (27),
and (28) (or figs. 2 and 3 instead of equations (27) and (28)).

The results represented by equation (31) are shown explicitly in
figure 4, where mtg 1is shown as a function of the coolant-temperature
ratio To/Te for various fixed values of the well-temperature
ratio To/Te. Thus, figure 4 shows essentially the separation point as
a function of the implicitly required normal mass flow for various fixed
degrees of cooling of the wall. Along any curve here for a glven value
of h, the higher the coolant-temperature ratio T,/T,, the greater will
be the magnitude of the corresponding normal-mess-flow parameter @(t).
This is illustrated in figure 5, based on equation (29), which shows

the required normal-mass-flow distributlion for two different values of
Te/Te with h = 0.6.

The case T¢/Te = O in figure 4 represents the limiting case in
which the required normal mass flow of the coolant is a minimum for the

glven desired wall-temperature ratio h(E T,/Tg), while the case T,/Te =h

represents the opposite limiting case of an Indefinitely large required
megnitude of coolant mass flow.

Figure 4 shows vividly the influence of & normal mass flow in pro-
moting separation. This can be seen from the fact that for a given
wall-temperature ratio h +the separation point moves upstream as the
coolant-temperature ratio 1s increased. It is further significant to
to note that all of the curves for h< 1 are below the straight line
corresponding to h = 1. The latter line represents the case of an

adiabatlc impermeable wall. This shows that the net effect of simultaneous

normel mass flow and cooling of the wall in flow over a transpiration-
cooled wall is, in all cases, to move the separation point upstream.
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Thus the unfavorable effect of normal mass flow, as such, on separation
evidently predominates, in this example, over the favorable effect (see,
e.g., ref. 6) of cooling of the wall, as such. This predominating
influence of the normal mass flow can be further seen in figure U by
noting that for a given coolant temperature the cooler it is desired to
maintain the sweat-cooled wall, the sooner laminar separation will occur.
Such is the case even if the minimum required normel mass flow of the
coolant is used (i.e., T, = 0) for each desired wall temperature.l

To show the influence of Mach number, the separation point as a
function of the wall temperature and coolant temperature was calculated
for Mo = 3, on the basis of equations (22) and (23). The integration
indicated in equation (22) was carried out numerically by Simpson's
rule. The results of this calculation are shown in figure 6. These
results are seen to be quite similar to those for zero Mach number
(fig. 4) and, hence, the same conclusions regarding the effect of simul-
taneous ccoling of the wall and normal mass flow which were drawn on
the basis of low-speed flow (My = O) remain valid for higher speeds, at

least for My = 3. Separation, however, is seen to occur earlier, that

is, farther upstream, at the high Mach number, for the same pairs of
values of To/Te and Teo/Te.-

CONCLUSIONS

From en analysis of separation in compressible flow over a
transpiration-cooled wall maintained at a uniform wall temperature by
an gppropriate distribution of normal mass flow, the following conclu-
sions, based on a Prandtl number of unity and a linear viscosity-
temperature relation, can be drawm:

1. For flow in a given adverse pressure gradient and at a given
reference Mach number, the separation point as a function of the wall
temperature and the coolant temperature can be calculated in a simple
manner by the approximate method developed here. The pertinent temper-
ature parameters at high speeds are h and (1 - h)/[h - (Tc/Te)],
where h = Tg/Te, To is the wall temperature, Te is the coolant
temperature, and Te 1is the adiabatic wall temperature.

TThe results in figure 4 although qualitatively similar to those
in reference 7 differ from the latter in that the corresponding curves
in reference 7 intersected one another, while there were pairs of values
of To/Te and Tc/Te for which még was downstream of that corresponding
to an adisbatic impermeable wall. This was due to the use of fourth-
degree velocity profiles in reference 7.
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2. From the numerical example calculated, it is seen that the net
effect of simultaneocus cooling of the wall and normal mass flow is to
move the separation point upstream. Thus, the unfavorable effect of
normal mass flow, as such, on separation predominates over the favorable
effect of cooling of the wall, as such. This conclusion is valid at
supersonic speeds as well as at low speeds.

3. From the same numerical example, it is found that for fixed
" pairs of values of To/Te and Tc¢/Te and a fixed external flow distri-

bution the effect of a higher Mach number is to move the separation
point upstream.

Polytechnic Institute of Brooklyn,
Brooklyn, N. Y., December 6, 1954.
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APPENDIX
DERIVATTON OF INTEGRAL EQUATIONS (9) AND (10)

Integrating equation (1) with regpect to y over the boundary-
layer thickness & yilelds

S)
Ju J[ Jf ou
pu — dy + pv dy PU, U = -[p = (A1)
fo o 1% (“ By)o

vhere a prime here denotes differentiation with respect to x. From
continuity equation (3) it follows that

o(pv) _ _9(pu) (a2)
oy Ax
and
5
(pv) g = PoVo - j; %}9{1—1)— dy (a3)

Integrating the second term of equation (Al) by parts and making
use of equations (A2) and (A3), it is found that equation (Al) can be
written, with a suiteble rearrangement and combination of terms, in
the form

N & -
f — (pu2 - puuj) dy + povouy + f (puui' - pyuquy') dy = -(u —)
0 aX 0 ay fo)

(k)

Applying the theorem on differentiation of an integral with respect to
a parameter a, namely,

b () b(a)
% L/;_(a,) f(y,ct.) dy = f a_af.zl_l dy - f(a. CL) _+ f(b a') d_‘b
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equation (AL) becames

5 5
% /; pu(ul - u) dy + uy' L (plul - pu) dy = povoul + (p. %)O (a5)

From equation (8) it follows that
dy = (T /Tl) at = (;’1 /p) dt (A6)

Moreover, du/dy = (0u/dt) (dt/dy) = (T1/T) (du/dt). Thus, transforming
equation (A5) from the xy plane to the xt plane and introducing
T=1t/6; (with t =8, when y = 8), equation (A5) becomes

1

a 2 ' T  u Ty v

— (F1p3u10+) + pjuquq'd L/ﬂ (——-- —\dT = pyVauy + — —F
d_x(lll ) + Puiuy 'Sy o \mp 7% PoVolll ”“KTwst5

(a7

vhere F; and Fz are defined as in the main text (following eq. (10)),

while use has been made of the viscosity-temperature relation (6). Equa-
tion (A7) can be written in the following nondimensional form:

u 2 ' u ' 1 u
e 2 (26 IEE) B S B -w) e
(ER)ER + pmrx g 2w (28)

where now the prime indicates differentiation with respect to §,

£ = x/l, and 1 1s a characteristic length. Carrylng out straight-
forwerdly the indicated differentiation of the first term in equation (A8)
and thereby obtaining four terms, combining these individual terms suit-
ably with the other terms in equation (A8), and dividing through by

(Pr/Pe) (20 [%0) (b fPuto?) Fte2a
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F pl' u ! 1 T
—Jﬁ+%l——+Fl+——ﬂi+/\(—-—-M =
2 P1 uy o\, Wy
Uy, poo__l 2 0
K= = —o\ A
uy PJLTm(3 KT1 \/—) (49)

vhere A = (St/l)zRe and o = ° "0 gel/2,  Observing that £rom the
definition of the stagnation enthalpy H

E.:E_(1+721 1) Z——Ml( )2 (A10)

and noting the definition of F1, 1t can be seen that the bracketed fac-

tor of wuj'/u; in equation (A9) is the same as that in equation (9).
Thus, equation (A9) is identical with equation (9) of the main text.

Equation (10) of the main text can be quite similarly derived from
partial differential equation (2).
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Figure 1.- Coolant parameter c¢ as a function of (1 - h)/[h - (Tc/Tezl
(eq. (26)).
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Figure 3.~ Constant ¢ as a function of temperature ratio h and
coolant parameter c.
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Figure k.- Separation point as a function of wall temperature snd coolant
temperature. w)/up =1 - mE; My = O.
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Figure 5.- Required normal-mass-flow distribution of coolant to maintain
wall-temperature ratio of h = 0.6. wuj/u, =1 - mé; My = 0; S/Ty = 0.416,
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Figure 6.~ Separation point as a function of wall temperature and coolant
temperature. w)fu, = 1 - mE; M, = 3.
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